First posted on CanEHealth.com
The provincial government is building a connected health care system centred around patients, families and caregivers through the newly established OHTs. As disparate healthcare and public health teams move towards a unified structure, there is a growing need to reconsider our information system strategy. Most off the shelf solutions are pricey, while open-source solutions such as DHIS2 is not popular in Canada. Some of the public health units have existing systems, and it will be too resource-intensive to switch to another system. The interoperability challenge needs an innovative solution, beyond finding the single, provincial EMR.
We have written about the theoretical aspects, especially the need to envision public health information systems separate from an EMR. In this working paper, we propose a maturity model for PHIS and offer some pragmatic recommendations for dealing with the common challenges faced by public health teams.
Below is a demo project on GitHub from the data-intel lab that showcases a potential solution for a scalable data warehouse for health information system integration. Public health databases are vital for the community for efficient planning, surveillance and effective interventions. Public health data needs to be integrated at various levels for effective policymaking. PHIS-DW adopts FHIR as the data model for storage with the integrated Elasticsearch stack. Kibana provides the visualization engine. PHIS-DW can support complex algorithms for disease surveillance such as machine learning methods, hidden Markov models, and Bayesian to multivariate analytics. PHIS-DW is work in progress and code contributions are welcome. We intend to use Bunsen to integrate PHIS-DW with Apache Spark for big data applications.
FHIR has some advantages as a data persistence schema for public health. Apart from its popularity, the FHIR bundle makes it possible to send observations to FHIR servers without the associated patient resource, thereby ensuring reasonable privacy. This is especially useful in the surveillance of pandemics such as COVID19. Some useful yet complicated integrations with OSCAR EMR and DHIS2 is under consideration. If any of the OHTs find our approach interesting, give us a shout.
BTW, have you seen Drishti, our framework for FHIR based behavioural intervention?
- Loading MIMIC dataset onto a FHIR server in two easy steps - November 20, 2024
- R&D and Innovation in IT; to or not to combine both - November 15, 2024
- Locally hosted LLMs - July 14, 2024
Pingback: OHDSI OMOP to FHIR mapper - Bell Eapen
Pingback: OHDSI OMOP CDM ETL Tools in Python, .Net and Go - Can-eHealth
Pingback: Rendering FHIR Questionnaire for data capture - Bell Eapen
Pingback: OHDSI OMOP CDM ETL Tools in Python, .Net and Go - Bell Eapen
Pingback: OHDSI OMOP to FHIR mapper - Can-eHealth