Bell Eapen

Physician | HealthIT Developer | Digital Health Consultant

Six things data scientists in healthcare should know

Healthcare, like most other fields, is eager to get on the data science bandwagon. Data scientists can make a huge difference in the way big data is utilized for clinical decision-making. However, there are paradigmatic differences in the way data scientists from quantitative fields view the world, compared to their clinical counterparts. This is especially true in the emerging fields of machine learning and artificial intelligence. This may lead to considerable inefficiencies. As a person trained in both fields, here is my take on this.

Data scientists
Credit: Dasaptaerwin, CC0, via Wikimedia Commons

Data scientists should focus on the problem and not the solutions

Data scientists are excited about the latest GPT or BERT. Data scientists tend to refine the model a bit more using 10 more GPUs! In the process, they tend to solve problems that do not exist. From my experience practicing medicine in extremely resource-poor areas, simple solutions are valued more than BERT running on Kubernetes! This is true in the developed world as well, and many teams may have fundamental data needs that need to be tackled first.

Explanation comes before prediction

Emerging machine learning methods prioritize prediction accuracy compromising on explainability in the process. Clinicians, in most cases, cannot use nor trust a model that arrives at a conclusion without showing how it reached there. Hence, in the clinical domain, a simple logistic regression model may be more acceptable than a deep learning neural network. Parsimony is the key and a bit of feature selection to ensure parsimony will be appreciated always.

You need to know the clinical terminologies

A basic understanding of the clinical terminologies and terminology systems such as SNOMED and ICD is vital. It helps in understanding the clinical community better. Any healthcare analytics to consider variations in terminologies and adopt a standard system for consistency. Any tool that data scientists build for the clinical community should have support for terminology systems.

Biostatistics is more pervasive than you think

Most healthcare professionals are trained in biostatistics. Hence, the thinking leans towards population, sampling, randomization, blindings and showing a ‘statistically significant’ difference. Moving towards machine learning needs a paradigmatic shift. It may be useful to have a discussion on this at the outset.

Classes are of unequal importance

In healthcare, finding one class (e.g. cancer) is more important than the other class (e.g. no cancer). One class may need active intervention to save lives. Hence, sensitivity and specificity are of vital importance than accuracy!

Life is precious!

In healthcare, there is no room for error. Some decisions may have disastrous consequences while few others may save lives. As a data scientist in the healthcare domain, you should be cognizant of the fact that healthcare data is different from banking/airline data.

Chatting with FHIR endpoint

FHIR is an emerging standard for exchanging healthcare information electronically. Searching for resources is fundamental to the mechanics of FHIR. Search operations traverse through an existing set of resources filtering by parameters supplied to the search operation. health information systems convert the clinicians’ interactions into the search string.

With the growing importance (and intelligence) of chatbots, it is possible to converse with the physician and retrieve what they want by converting their needs to FHIR search string. This can make the clinicians’ life easy as most of them do not like entering complex search terms into text boxes.

Rasa is an open-source machine learning framework for building AI assistants and chatbots. You can create custom actions with Rasa to support various use-cases. The Microsoft Bot Framework SDK allows you to create and develop bots for the Azure Bot Service. Starting with version 4.7 of the Bot Framework SDK, you can extend a bot using another bot (a skill). A skill can be consumed by various other bots, facilitating reuse.

During the COVID break, I created a couple of experimental projects to make chatting with electronic health records possible. One is a RASA project for mapping conversations to FHIR search.

The other is a FHIR search skill for Microsoft Bot SDK that more or less does the same thing.

These are experimental for now and pull requests are welcome!

FHIR and public health data warehouses

First posted on CanEHealth.com

The provincial government is building a connected health care system centred around patients, families and caregivers through the newly established OHTs. As disparate healthcare and public health teams move towards a unified structure, there is a growing need to reconsider our information system strategy. Most off the shelf solutions are pricey, while open-source solutions such as DHIS2 is not popular in Canada. Some of the public health units have existing systems, and it will be too resource-intensive to switch to another system. The interoperability challenge needs an innovative solution, beyond finding the single, provincial EMR.

artificial intelligence

We have written about the theoretical aspects, especially the need to envision public health information systems separate from an EMR. In this working paper, we propose a maturity model for PHIS and offer some pragmatic recommendations for dealing with the common challenges faced by public health teams. 

Below is a demo project on GitHub from the data-intel lab that showcases a potential solution for a scalable data warehouse for health information system integration. Public health databases are vital for the community for efficient planning, surveillance and effective interventions. Public health data needs to be integrated at various levels for effective policymaking. PHIS-DW adopts FHIR as the data model for storage with the integrated Elasticsearch stack. Kibana provides the visualization engine. PHIS-DW can support complex algorithms for disease surveillance such as machine learning methods, hidden Markov models, and Bayesian to multivariate analytics. PHIS-DW is work in progress and code contributions are welcome. We intend to use Bunsen to integrate PHIS-DW with Apache Spark for big data applications. 

FHIR has some advantages as a data persistence schema for public health. Apart from its popularity, the FHIR bundle makes it possible to send observations to FHIR servers without the associated patient resource, thereby ensuring reasonable privacy. This is especially useful in the surveillance of pandemics such as COVID19. Some useful yet complicated integrations with OSCAR EMR and DHIS2 is under consideration. If any of the OHTs find our approach interesting, give us a shout. 

BTW, have you seen Drishti, our framework for FHIR based behavioural intervention? 

Deploy a fastai image classifier using OpenFaaS for serverless on DigitalOcean in 5 easy steps!

WordPress › Error

There has been a critical error on this website.

Learn more about troubleshooting WordPress.