Bell Eapen MD, PhD.

Bringing Digital health & Gen AI research to life!

Navigating the Complexities of Gen AI in Medicine: 5 Development Blunders to Avoid

Below, I have listed five critical missteps that you should steer clear of to ensure the successful integration of Gen AI in Medicine. This post is primarily for healthcare professionals managing a software team developing a Gen AI application.

Navigating the Complexities of Gen AI in Medicine: 5 Development Blunders to Avoid

Image credit: Nicolas Rougier, GPL via Wikimedia Commons

#1 Focus on requirements

Gen AI is an evolving technological landscape. ChatGPT’s user interface makes it look simplistic. Even a simple interface to any LLM is useful for mundane clinical chores (provided PHI is handled appropriately). However, developing an application that can automate tasks or assist clinical decision-making requires much engineering. It’s crucial to define clear and detailed requirements for your Gen AI solution. Without a comprehensive understanding of the needs and constraints, your project can easily become misaligned with clinical goals. Ensure that your AI application is not only technically sound but also meets the specific demands of healthcare settings. This precision will guide your software development process, avoiding costly detours or features that do not add value to healthcare providers or patients.

#2 Avoid solutioning

When working with your software team, be wary of dictating specific semi-technical solutions too early in the process. Most applications require techniques beyond prompting in a text window. It’s essential to allow your engineering team to explore and assess various options that can best meet the outlined requirements. By fostering an environment where creative and innovative problem-solving flourishes, you enable the team to find the most effective and sustainable technological path. This approach can also lead to discoveries of new capabilities of Gen AI that could benefit your project.

#3 Prioritize features

It’s essential to prioritize the features that will bring the most value to the end-user. Engage with stakeholders, including clinicians and patients, to understand what functionalities are most critical for their workflow and care delivery. This collaborative approach ensures the practicality of the AI application and aligns it with user needs. Avoid overloading your app with unnecessary features that complicate the user experience and detract from the core value proposition. Instead, aim for a lean product with high-impact features.

Gen AI app development is a time-consuming and technically challenging process. It is important to keep this in mind while prioritizing. Time and resource management are key in this regard. Allocate sufficient time for your team to refine their work, ensuring that each feature is developed with quality and precision. This disciplined approach to scheduling also helps in avoiding burnout among your team members, which is common in high-pressure development environments. Remember, a feature-packed application that lacks reliability or user-friendliness is less likely to be embraced by the healthcare community. Focus on delivering a polished, useful tool.

#4 You may never get it right, the first time when it comes to Gen AI in Medicine

Accept that perfection is unattainable on the initial try. In the world of software, especially with Gen AI, iterative testing and refinement are key. Encourage your team to build a Minimum Viable Product (MVP) and then improve it through user feedback and continuous development cycles. This iterative process is crucial to adapt to the ever-changing needs of healthcare professionals and to integrate the latest advancements in AI. Also, don’t underestimate the value of user testing; real-world feedback is invaluable.

#5 Avoid technology pivots and information overloads

Avoiding abrupt technological shifts late in the development cycle is critical. Such pivots can be costly and disruptive, derailing the project timeline. Stay committed to the chosen technology stack unless significant, unforeseeable impediments arise. Additionally, guard against overwhelming your team with excessive information. While staying informed is crucial, too much data can paralyze decision-making. Strive for a balance that empowers your team with the knowledge they need to be effective without causing analysis paralysis.

In my next post, I will explain the symbols and notations that I employ in my Gen AI in Medicine development process. BTW, What is your next Gen AI in Medicine project?

Medprompt: How to architect LLM solutions for healthcare.

Leveraging the power of advanced machine learning, particularly large language models (LLMs), has increasingly become a transformative element in healthcare and medicine. The applications of LLMs in healthcare are multifaceted, showing immense potential to improve patient outcomes, streamline administrative tasks, and foster medical research and innovation.

David S. Soriano, CC BY-SA 4.0 <>, via Wikimedia Commons
Image Credit: David S. Soriano, CC BY-SA 4.0, via Wikimedia Commons

Architecting LLM solutions in the healthcare domain is challenging because of the intricacies associated with healthcare data and the complex nature of healthcare applications. In this post, I will give some recommendations based on the widely popular LangChain library, giving some examples.

The first step is to define the overarching problem you are trying to solve. It can be broad as in getting the right information about a patient to the doctor. Next, subdivide the problem into subproblems that can be tackled separately. For example in the above case, we need to find the patient’s health record, convert it into an easily searchable form (embedding), find areas of interest in the record and generate a summary or an answer to the specific question. Next, find solutions for each problem that may or may not require an LLM. Finally, design the orchestrator that can stitch everything together.

LangChain has some useful abstractions that will help in the last two steps. If the solution does not involve an LLM and mostly involves data retrieval and transformations, use the tool abstraction. If you need one or more LLM calls to achieve it, use the chain abstraction. Agents are the orchestrators that can stitch everything together. It is important to carefully craft the prompts for the chains and agents. Rigorous testing is vital. This includes technical performance and validation of the model’s recommendations by healthcare professionals to ensure they are accurate and clinically relevant.

MEDPrompt coming soon!

Named Entity Recognition using LLMs: a cTakes alternative?

TLDR: The targeted distillation method described may be useful for creating an LLM-based cTakes alternative for Named Entity Recognition. However, the recipe is not available yet. 

Image credit: Wikimedia

Named Entity Recognition is essential in clinical documents because it enhances patient safety, supports efficient healthcare workflows, aids in research and analytics, and ensures compliance with regulations. It enables healthcare organizations to harness the valuable information contained in clinical documents for improved patient care and outcomes. 

Though Large Language Models (LLMs) can perform Named Entity Recognition (NER), the capability can be improved by fine-tuning, where you provide the model with input text that contains named entities and their associated labels. The model learns to recognize these entities and classify them into predefined categories. However, as described before fine-tuning Large Language Models (LLMs) is challenging due to the need for substantial, high-quality labelled data, the risk of overfitting on limited datasets, complex hyperparameter tuning, the requirement for computational resources, domain adaptation difficulties, ethical considerations, the interpretability of results, and the necessity of defining appropriate evaluation metrics. 

Targeted distillation of Large Language Models (LLMs) is a process where a smaller model is trained to mimic the behaviour of a larger, pre-trained LLM but only for specific tasks or domains. It distills the essential knowledge of the LLM, making it more efficient and suitable for particular applications, reducing computational demands.  

This paper described targeted distillation with mission-focused instruction tuning to train student models that can excel in a broad application class. The authors present a general recipe for such targeted distillation from LLMs and demonstrate that for open-domain NER. Their recipe may be useful for creating efficient distilled models that can perform NER on clinical documents, a potential alternative to cTakes. Though the authors have open-sourced their generic UniversalNER model, they haven’t released the distillation recipe code yet. 

REF: Zhou, W., Zhang, S., Gu, Y., Chen, M., & Poon, H. (2023). UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition. ArXiv. /abs/2308.03279