

DHTI CLI Cheat sheet
Installation & Setup
npx dhti-cli help # Show available commands

Command Reference
compose - Manage Docker Compose Services
Generate and manage docker-compose.yml files from modules.

Operations: add, delete, read, reset, env

Common Usage:

npx dhti-cli compose add -m langserve -m openmrs

npx dhti-cli compose delete -m redis

npx dhti-cli compose read

npx dhti-cli compose env -e FHIR_BASE_URL -v
http://example.com -s langserve

Modules: langserve, openmrs, ollama, langfuse, cqlFhir, redis,
neo4j, mcpFhir, mcpx, docktor, medplum, fhir, gateway, webui

Key Flags:

• -f, --file — Docker compose file path (default: ~/dhti/docker-
compose.yml)

• -m, --module — Module to add/delete (multiple allowed)
• -e, --env — Environment variable name
• -v, --value — Environment variable value
• -s, --service — Service name to update (default: langserve)
• --host — Use host env pattern (${VAR:-default})
• --dry-run — Preview changes without executing

conch - OpenMRS Frontend Development
Initialize, install, or start OpenMRS ESM frontend development.

Operations: init, install, start

Common Usage:

npx dhti-cli conch init -n my-app -w ~/projects

npx dhti-cli conch install -n my-app -w ~/projects -b
develop

npx dhti-cli conch start -n my-app -w ~/projects

npx dhti-cli conch start -n my-app -w ~/projects -s
packages/esm-chatbot-agent

Key Flags:

• -n, --name — Name of the conch (required for init/install/start)
• -w, --workdir — Working directory (default: ~/dhti)
• -b, --branch — Git branch to install from (default: develop)
• -g, --git — GitHub repo (default: dermatologist/openmrs-esm-dhti-

template)
• -s, --sources — Additional sources to include when starting
• --dry-run — Preview changes without executing

docker - Build & Manage Docker Containers
Build Docker images and manage container operations.

Common Usage:

npx dhti-cli docker -n my-image -t elixir

npx dhti-cli docker -u # Start containers

npx dhti-cli docker -d # Stop containers

npx dhti-cli docker -g # Restart gateway container

npx dhti-cli docker -r dhti-langserve-1 # Restart

npx dhti-cli docker bootstrap -f
~/dhti/elixir/app/bootstrap.py

Key Flags:

• -n, --name — Container name to build
• -t, --type — Service type: elixir or conch (default: elixir)
• -f, --file — Docker compose file path (default: ~/dhti/docker-

compose.yml)
• -c, --container — Target container name (default: dhti-langserve-

1)
• -u, --up — Run docker-compose up -d
• -d, --down — Run docker-compose down
• -g, --gateway — Restart gateway container
• -r, --restart — Restart specific container by name
• --dry-run — Preview changes without executing

elixir - Manage Backend Elixirs (Python Services)
Install, uninstall, or manage elixir dependencies.

Operations: init, install, uninstall, dev, start

Common Usage:

npx dhti-cli elixir init -n my-elixir -w ~/dhti

npx dhti-cli elixir install -n my-elixir -g
dermatologist/my-repo

npx dhti-cli elixir uninstall -n my-elixir

npx dhti-cli elixir dev -n my-elixir -d ~/dev/my-elixir

npx dhti-cli elixir start -n my-elixir --elixir
http://localhost:8001/langserve/my_elixir/cds-services

Key Flags:

• -n, --name — Name of the elixir
• -w, --workdir — Working directory (default: ~/dhti)
• -g, --git — GitHub repo URL to install from
• -b, --branch — Git branch (default: develop)
• -p, --pypi — PyPi package spec (e.g., "dhti-elixir-base>=0.1.0")
• -l, --local — Local directory path for installation
• -e, --whl — .whl file to install
• -s, --subdirectory — Subdirectory for monorepos
• -v, --repoVersion — Elixir version (default: 0.1.0)
• -f, --fhir — FHIR endpoint URL (default:

http://hapi.fhir.org/baseR4)
• -c, --container — Container name (default: dhti-langserve-1)
• -d, --dev — Dev folder for live reload
• --dry-run — Preview changes without executing

synthea - Synthetic FHIR Data Generation
Manage Synthea for generating synthetic patient data.

Subcommands: install, generate, upload, delete, download

Common Usage:

npx dhti-cli synthea install

npx dhti-cli synthea generate -p 50

npx dhti-cli synthea generate -p 10 -s MA -c Boston -g M -a
18-65

npx dhti-cli synthea upload -e http://fhir:8005/baseR4 -t
bearer-token

npx dhti-cli synthea download --covid19

npx dhti-cli synthea delete

Key Flags:

• -w, --workdir — Working directory (default: ~/dhti)
• -p, --population — Number of patients to generate (default: 1)
• -s, --state — State for patient generation
• -c, --city — City for patient generation
• -g, --gender — Patient gender (M or F)
• -a, --age — Age range (e.g., "0-18")
• --seed — Random seed for reproducibility
• -e, --endpoint — FHIR server URL (default:

http://fhir:8005/baseR4)
• -t, --token — Bearer token for authentication
• Download Flags: --covid19, --covid19_10k, --covid19_csv, --

covid19_csv_10k, --synthea_sample_data_csv_latest, --
synthea_sample_data_fhir_latest, --
synthea_sample_data_fhir_stu3_latest

• --dry-run — Preview changes without executing

docktor - Manage MCPX Inference Pipelines
Install, remove, restart, or list inference pipelines.

Operations: install, remove, restart, list

Common Usage:

npx dhti-cli docktor install my-pipeline -i my-image:latest
-m ./models

npx dhti-cli docktor remove my-pipeline

npx dhti-cli docktor list

npx dhti-cli docktor restart

Key Flags:

• -c, --container — MCPX container name (default: dhti-mcpx-1)
• -i, --image — Docker image for inference pipeline (required for

install)
• -m, --model-path — Local model directory path
• -e, --environment — Environment variables (format: VAR=value,

multiple allowed)
• -w, --workdir — Working directory (default: ~/dhti)

mimic - FHIR Data Import from MIMIC-IV
Submit FHIR import requests to a FHIR server.

Common Usage:

npx dhti-cli mimic http://localhost/fhir/$import

npx dhti-cli mimic http://fhir:8005/baseR4/$import -t
bearer-token

Arguments:

• server — FHIR server URL (default: http://localhost/fhir/$import)

Key Flags:

• -t, --token — Bearer token for authentication
• --dry-run — Preview request without sending

synthetic - Generate Synthetic Data with LLM
Process data using LLM to generate synthetic outputs.

Arguments:

• input — Input file path
• output — Output file path (required)
• prompt — Prompt file path

Common Usage:

npx dhti-cli synthetic input.json output.json prompt.txt

npx dhti-cli synthetic output.json --maxCycles 5 -r 10 -m 0

npx dhti-cli synthetic input.json output.json -i input -o
output

Key Flags:

• -i, --inputField — Input field name (default: input)
• -o, --outputField — Output field name (default: output)
• -m, --maxCycles — Max cycles for generation (0 = process file

records)
• -r, --maxRecords — Max records to process (default: 10)
• --dry-run — Preview changes without executing

Common Patterns
Full Stack Setup:

npx dhti-cli compose add -m openmrs -m langserve

npx dhti-cli docker -u # Start everything

npx dhti-cli elixir install -n my-service -g my/repo

Development Workflow:

npx dhti-cli elixir dev -n my-service -d ~/dev/my-service

npx dhti-cli docker -g # Restart gateway if needed

Data Generation & Upload:

npx dhti-cli synthea generate -p 100

npx dhti-cli synthea upload -e http://fhir:8005/baseR4

Global Options
All commands support:

• --dry-run — Preview changes without executing
• --help — Show command help
• --version — Show CLI version

